DOI: http://dx.doi.org/10.18782/2320-7051.2966

ISSN: 2320 – 7051 *Int. J. Pure App. Biosci.* **5 (2):** 1017-1024 (2017)

Research Article

Life Cycle and Pathogenicity of *Meloidogyne incognita* on *Capsicum frutescens* under Poly-House as Compared to Screen-House Conditions

Priyanka Duggal, Sewak Ram, A. K. Bhatia^{*} and Jaydeep Patil

Department of Nematology and *Department of Vegetable Science CCS HAU Hisar, Haryana 125004, India *Corresponding Author E-mail: duggalpriyanka65@gmail.com Received: 20.04.2017 | Revised: 28.04.2017 | Accepted: 29.04.2017

ABSTRACT

The life cycle and pathogenicity of root-knot nematode (Meloidogyne incognita) studied on Capsicum under polyhouse as well as screen house conditions for comparision. Nematode development was observed faster under polyhouse condition (35 days) as compared to screenhouse (40 days). The pathogenicity of root-knot nematode at the different inoculum levels viz., 0, 10, 100, 1,000 and 10,000 J₂ of Meloidogyne incognita /pot resulted into significant reduction in plant growth parameters at pathogenic level of nematode at and above 1,000 J₂ inoculum level under both the conditions but plant growth parameters like shoot length (37.7 cm), fresh shoot weight (10 g), dry shoot weight(3 g), fresh root weight(9.3 g), dry root weight (2.9 g) and nematode reproduction parameters viz. number of galls per root system, no. of egg masses per root system and final nematodes population was recorded higher under polyhouse conditions due to optimum condition for both, plant and nematode.

Key words: Polyhouse, screen house, root-knot nematode, Capsicum, life cycle, pathogenicity and growth parameters.

INTRODUCTION

Capsicum (*Capsicum frutescens*) is variously called as green pepper, sweet pepper, bell pepper, etc. It belongs to the family Solanaceae. This crop is successfully grown under the protected cultivation which is an emerging technology for raising high value crops in tropical and sub-tropical climatic conditions of the country and it has very good potential especially in semi-urban areas around cities. The protected cultivation has shown high productivity, better quality produce, early maturity and year round cultivation of plants due to controlled environmental conditions hence gives manifolds increase in yield per unit area. Though in the polyhouses, crops are grown under protected conditions, yet the crops are not protected as it involves intensive cultivation of crops, optimum use of fertilizers and frequent use of irrigation, but continuous growing of the same crop with high day temperature and relative humidity within the greenhouse, polyhouse and low tunnel along with poor plant hygienic conditions inside and outside the greenhouse increase problem of soil borne pests and diseases including plant parasitic nematodes which results in the availability of ideal conditions for the growth and multiplication of these pests.

Cite this article: Duggal, P., Ram, S., Bhatia, A.K. and Patil, J., Life Cycle and Pathogenicity of *Meloidogyne incognita* on *Capsicum frutescens* under Poly-House as Compared to Screen-House Conditions, *Int. J. Pure App. Biosci.* **5(2):** 1017-1024 (2017). doi: http://dx.doi.org/10.18782/2320-7051.2966

Duggal *et al*

Among the plant parasitic nematodes, rootknot nematode (Meloidogyne spp.), is the most destructive and difficult to control in protected cultivation system. The crops which are grown throughout the year under polyhouse conditions are seriously affected with rootknot nematodes (Meloidogyne spp.) which cause severe damage to crops and ultimately increase the economic losses. In Haryana, in a field naturally infested with M. incognita at 28-34 J_2/g soil, losses in yields of okra, tomato and brinjal were 90.9%, 46.2%, and 27.3%, respectively⁴. Reddy¹⁶ observed 39.8% reduction in tomato yield in a field infested with nematode population at 20 J_2/g soil.

MATERIAL AND METHODS

Present study was carried out to determine the life cycle and pathogenicity of root- knot nematode, M. incognita in Capsicum crop under polyhouse of the Department of Vegetable Science and screen house of the Department of Nematology, CCS Haryana Agricultural University, Hisar. Pure inoculum root-knot nematode of (Meloidogyne incognita) was prepared by single egg masse culture. For life cycle experiment, 1,000 J₂ per pot (6" diameter) were inoculated. The pots were filled with steam sterilized sandy loam soil autoclaved at $121\pm1^{\circ}$ C temperature and 15 lbs pressure. Each pot was transplanted with seedling of Capsicum crop. The seedlings were inoculated with 1,000 freshly hatched second stage juveniles of *M. incognita* per pot on to the exposed roots. Each treatment was replicated three times with completely randomized design.

The experiment on Pathogenicity of root-knot nematode, *M. incognita* was conducted using the planting material brought from a Govt. nursery. The pots were filled with steam sterilized sandy loam soil. The seedling planted in these pots after mixing well decomposed farm yard manure. The seedlings were inoculated with freshly hatched second stage juvenile of *M. incognita* with different inoculum levels viz., 0, 10, 100, 1,000 and 10,000 J₂ per pot on to the exposed roots. Each treatment was replicated three times with completely randomized design.

The seedlings were uprooted after 45 days of inoculation and observations on plant growth parameters *viz*. Shoot length, Fresh shoot weight, Fresh root weight, Dry shoot weight, Dry root weight and nematode multiplication parameters *viz*. no. of galls and eggmasses per root system, final nematode population was recorded.

RESULTS AND DISCUSSION

Life cycle of root-knot nematode in Capsicum under screen house and polyhouse conditions:

The observations presented in Fig. 1 revealed that under screen house conditions, J_2 penetration started at root tips on 2nd day and maximum penetration was observed on 6th dav. J_2 started swelling on 11^{th} day (J_2 with spike tail) which became J_3 on 14^{th} day and continued up to 20^{th} day. On 23^{rd} day, J₄ stage was detected which started further swelling and after 6 days, female was observed on 29th day. Gravid female was observed on 35th day. Gravid female with eggmasses and J_2 in soil were observed on 40-45th days. Under polyhouse conditions, J_2 penetration started at root tips on 2nd day and maximum penetration was observed on 4^{th} day, J_2 started swelling on 8^{th} day (J₂ with spike tail) which became J₃ on 11th day. There was no further development of J_3 up to 17^{th} day. On 20^{th} day, J_4 stage was detected which started further swelling. After 6 days i.e. on 26th day, female was observed while gravid female was observed on 29th day. Gravid female with eggmasses and J_2 in soil were observed on35th day. Same observations were recorded up to 45th days.

Fig. 1: Comparison between life cycle of root-knot nematode under screen house and polyhouse conditions in Capsicum

Capsicum crop was transplanted on 12 Oct 2014, the result showed that root-knot nematode completed its life cycle in 40 days under screen house condition (Temp. 7.7-33.7 ^oC) and in 35 days under polyhouse condition (Temp. 12.7-38.7 °C). The results for both given conditions are in agreement with those of Al-Sayed *et al.*¹, who studied the life cycle of M. incognita on tomato, okra, pepper, cowpea, sunflower and soybean. They observed that life cycle of *M. incognita* varied according to temperature and host type. In tomato, okra, pepper and cowpea *M. incognita* required 28 days at 32 ± 5 ^oC to develop and produce second stage juveniles of the next generation, 21 days were sufficient in sunflower but 35 days were required in soybean. At lower temperature of 20 ± 5 ⁰C the nematode needed 35 days to produce the next generation in tomato, sunflower, okra and soybean, 42 days in cowpea and 49 days in pepper. Anamika & Simon² recorded the life cycle of *M. incognita* in tomato and brinjal seedlings during different months at different temperature. The life cycle of M. incognita seems to be related with temperature. They reported that during the month of November the life cycle was completed in 25 days. The results are in collaboration with as that of Curto *et al.*⁶, studied a susceptible tomato cultivar (UC82) in pots to collect more complete observations of the nematode life cycle on the selected plant roots. Plants were cultivated in the glasshouse for 14-15 weeks and evaluated every 2 weeks. Root gall rating, population reproduction factor and life cycle duration showed wide differences amongst the different accessions and the life cycle of *M. incognita* was not completed, even after 15 weeks.in Rapistrum rugosum sel. ISCI 15. Mahapatra & Swain¹³ reported that life cycle $(J_2 \text{ to } J_2)$ of *M. incognita* on black gram was completed within 32 days at a temperature range of 18-34 ⁰C. The juveniles started penetrating roots as early as 12 hrs after inoculation and continued up to 6th day. Initiation of moulting in J₂ was observed on 8th day of inoculation and completed on 14th day. Third moulting started on the 16th day and was completed on 22nd day of inoculation and young females developed. Mature females secreted egg sacs on 26th day of inoculation. Singh & Kumar (1998) studied the life cycle of M. incognita on Japanese mint (Mentha arvensis). Life cycle of M. incognita on Japanese mint (Mentha arvensis cv. 'Shivalik') was completed from J_2 to J_2 in 29 days at temperature 13 °C-37 °C during March and April. Tarjan¹⁸ reported that the egg production of females started 39 days after inoculation for *M. incognita*, on *Antirrhinum majus*.

Pathogenicity of root-knot nematode in Capsicum under screen house and polyhouse conditions

The data recorded on various plant growth parameters and nematode parameters of rootknot nematode revealed that all the growth

ISSN: 2320 - 7051

parameters decreased with increase in inoculum levels of root-knot nematode, *Meloidogyne incognita* under screen house (Table 1) and polyhouse conditions (Table 2).

Screen house conditions: Under The maximum shoot length (33.3 cm) was observed in uninoculated control which differed significantly at 1,000 J₂ level (25.7 cm), being minimum (22.2 cm) at 10,000 J_2 level. Fresh shoot weight (9.4 g) was recorded in uninoculated control. Minimum shoot weight (4.7 g) was recorded at 10,000 J_2 level. Significant reduction in dry shoot weight was observed at and above 1,000 J_2 level (1.3 g), being minimum at 10,000 J₂ level (0.6 g) as compared to uninoculated control level where mximum dry shoot weight (2.3 g) was observed. Fresh root weight was found maximum (11.3 g) in uninoculated control which differed significantly at and above 1,000 J₂ /plant (5.1 g), being minimum (3.8 g) at highest inoculum level of 10,000 J₂/plant. Maximum dry root weight (2.6 g) was recorded in uninoculated control. However, the differences at 1,000 (1.4 g) and 10,000 J_2 inoculum level (1.0 g) were statistically nonsignificant.

Minimum no. of galls (4.0/plant) was observed at inoculum level of 10 J₂/plant, being maximum (242.3/plant) at highest inoculum level of 10,000 J₂/plant followed by 183.7 galls at 1,000 J₂/plant. Maximum number of eggmasses (118.7) was observed at 10,000 J₂ inoculum level followed by 1,000 J₂ level (90.7) and 17.3 at inoculum level of 100 J₂/plant. However, no eggmasses were found at 10 J₂ inoculum level.

Final nematode population was found maximum (15036.3 J_2/kg soil) at inoculum level of 10,000 J_2 followed by 1361.3 J_2/kg soil at inoculum level of 1,000 $J_2/plant$. Minimum number of larvae (12.7/kg soil) was recorded at inoculum level of 10 $J_2/plant$ followed by 100 J_2 at inoculum level (146.3 J_2/kg soil).

Number of galls, eggmasses and final nematode population increased with increase in inoculum level conspicuously at and above $1,000 \text{ J}_2$ level

Under polyhouse conditions: Data in Table 2 showed that maximum shoot length (37.7 cm) was recorded in uninoculated control, however, significant differences in shoot length were observed at and above $1,000 J_2$ inoculum level (31.3 cm) which differed significantly from 10,000 J₂ inoculum level (27.7 cm). Fresh shoot weight was found maximum (10.0 g) at 0 inoculum level and significant differences in shoot weight were observed at and above 100 J_2 level (8.2 g), being minimum (5.0 g) at 10,000 J_2 inoculum level. Significant differences in dry shoot weight in control (3.0 g/plant) were observed at and above inoculum level of 1,000 J₂/plant (1.1 g), being minimum (1.0 g) at inoculum level of 10,000 J₂/plant. The differences in dry shoot weight at 1,000 (1.1) and 10,000 J_2 (1.0) inoculum level were statistically nonsignificant. Fresh root weight was found maximum in (9.3 g) in uninoculated check, being minimum in (3.8 g) at highest inoculum level 10,000 J_2 /plant and 5.7 g at 1,000 J_2 level. Significant reduction in dry root weight over uninoculated check (2.9 g) was observed at and above $1,000 \text{ J}_2$ level (1.6 g), being minimum in (1.2 g) at an inoculum level of 10,000 J₂/plant. Number of galls per root system was found maximum (151.6) at highest inoculum level of 10,000 J₂/plant followed by $1,000 \text{ J}_2$ level (108.3). The significant differences in number of galls at 1,000 J₂ level (108.3) and 10,000 inoculum level (151.6) were recorded. Maximum number of eggmasses (107.7) were recorded at highest inoculum level of 10,000 J₂/plant followed by $1,000 \text{ J}_2/\text{plant}$ (66.0) which differed statistically with each other, however, only 11.0 eggmasses/root system were observed at 100 J₂ level of inoculation which were significantly less than that at 1,000 and 10,000 J₂ inoculum level. Final nematode population also increased with increase in inoculum level. Maximum final nematode population (18335.7 J₂/kg soil) was recorded at inoculum level of 10,000 J₂ level followed by 1603.3 J_2 /kg soil at inoculum level of 1,000 J_2 which were statistically different from each other. Final nematode population at 100 J₂

Duggal *et al*

Int. J. Pure App. Biosci. 5 (2): 1017-1024 (2017)

ISSN: 2320 - 7051

level (156.7) was significantly less than that at 1,000 and 10,000 J_2 level. The Fig. 2 indicates that maximum shoot length, fresh shoot weight, dry shoot weight, fresh root weight and dry root weight was observed under polyhouse conditions.

On the basis of the information, obtained from the data in Table 1 & 2 regarding pathogenic level of *Meloidogyne incognita* in Capsicum under screen house and polyhouse conditions, it is revealed that inoculum level of 1,000 J_2 /plant was pathogenic under both the conditions, however, all the growth parameters except fresh root weight were comparatively more in case of polyhouse conditions as compared to screen house conditions but nematode reproduction parameters except final nematode population was recorded maximum under screen house condition (Fig. 2 & 3).

Table 1: Effect of root-knot nematode, Meloidogyne incognita on plant growth parameters and nematod	es
reproduction factor in capsicum under screen house conditions (Mean of three replicates)	

							-	
Inoculum levels	Shoot length (cm)	Fresh shoot weight (g)	Dry shoot weight (g)	Fresh root weight (g)	Dry root weight (g)	No. of galls per root system	No. of eggmasses per root system	FNP (J ₂ in soil)
0	33.3	9.4	2.3	11.3	2.6	0.0 (1.0)	0.0 (1.0)	0.0 (1.0)
10	32.7	8.3	2.0	10.0	2.3	4.0 (2.3)	0.0 (1.00)	12.7 (3.7)
100	30.9	7.8	1.8	8.7	2.0	48.6 (7.0)	17.3 (4.2)	146.3 (12.3)
1,000	25.7	6.4	1.3	5.1	1.4	183.7 (13.6)	90.7 (9.6)	1361.3 (37.0)
10,000	22.2	4.7	0.6	3.8	1.0	242.3 (15.6)	118.7 (10.9)	15036.3 (122.5)
C.D. (P= 0.05)	3.0	1.2	0.16	1.8	0.3	(0.1)	(0.2)	(3.2)

• Figures in parentheses are $\sqrt{n+1}$ transformed value

 Table 2: Effect of root-knot nematode, *Meloidogyne incognita* on plant growth parameters and nematodes reproduction factor in capsicum under polyhouse condition (Mean of three replicates)

Inoculum levels	Shoot length (cm)	Fresh shoot weight (g)	Dry shoot weight (g)	Fresh root weight (g)	Dry root weight (g)	No. of galls per root system	No. of eggmasses per root system	FNP (J ₂ in soil)
0	37.7	10.0	3.0	9.3	2.9	0.0 (1.0)	0.0 (1.0)	0.0 (1.0)
10	36.0	9.1	2.5	8.4	2.6	20.0 (4.6)	0.0 (1.0)	13.3 (3.8)
100	35.3	8.2	2.3	8.0	2.4	33.3 (5.8)	11.0 (3.5)	156.7 (12.5)
1,000	31.3	6.7	1.1	5.7	1.6	108.3 (10.4)	66.0 (8.2)	1603.3 (40.0)
10,000	27.7	5.0	1.0	3.8	1.2	151.6 (12.3)	107.7 (10.4)	18335.7 (135.4)
C.D. (P= 0.05)	3.4	0.6	0.6	2.0	0.5	(0.4)	(0.2)	(0.4)

• Figures in parentheses are $\sqrt{n+1}$ transformed value

Fig. 2: Comparison between growth parameters of capsicum under screen house and polyhouse conditions

Fig. 3: Comparison between root-knot nematode reproduction parameters under screen house and polyhouse conditions in capsicum

The pathogenic level of root-knot nematode in Capsicum was recorded at and above $1,000 J_2$ inoculum level under both the conditions but most of the plant growth parameters and nematode reproduction parameters were recorded higher under protected cultivation, perhaps due to optimum condition for plant and nematode, both. The results of pathogenicity of

root-knot nematode at the prescribed inoculum levels are in agreement with that of Pankaj & Siyanand¹⁵ who studied the effect of initial inoculum levels on gerbera, capsicum and strawberry viz., 0, 10, 100, 1,000 and 10, 000 J₂ of *M. incognita* /kg soil on bitter gourd and round melon under pot conditions and reported that significant reduction in plant growth was

Duggal *et al*

ISSN: 2320 - 7051

observed at all the initial inoculum levels. The damaging threshold level in bitter gourd was found to be 1 J_2/g soil as against 10 J_2/g soil in round melon. Ansari et al.3, who conducted an experiments under net house condition to determine the individual effect of different inoculum levels of root-knot nematode, Meloidogyne incognita, Race-2 on plant growth parameters viz., Plant length, fresh and dry weights and number of fruits of tomato var. P21. The threshold level of root-knot nematode was 1000 J₂/kg soil. Inoculum level of Meloidogyne incognita race-2 was pathogenic at and above 1000 J₂/kg soil and caused significant reduction. Choi et al.⁵, who studied the effects of Pratylenchus coffeae on growth of Gerbera jamesonii cv. Teracombi in a greenhouse. At inoculum levels of 1,000, 5,000 and 10,000 nematodes, fresh shoot and root weights were reduced by 69, 76 and 85 per cent. Six months after planting, plants inoculated with 1,000 and 5000 nematodes, the number of flowers decreased by 81 per cent and 95 per cent respectively, while 10,000 nematodes per plant produced no flowers. Dhankar *et al.*⁷, who reported that the threshold inoculum levels of *M. incognita* on water melon (Citrullus vulgaris Scharad) was 1,000 larvae/kg soil. At this inoculum levels all the plant growth parameters were significantly reduced over control. Ganaie et al.8, who observed a significant reduction in various plant growth parameters of okra at and above the inoculum level of 1,000 J₂ / 2 kg soil of M. incognita. Gupta et al.9, who reported the effect of various initial inoculum levels viz., 0, 10, 100, 1,000, 2,000, 5000 and 10, 000 J₂ of Meloidogyne spp. /kg soil on some cucurbitaceous crops. They found significant reduction in growth of all the crops at initial inoculum level of 1,000 J₂/pot. Galling was found maximum at highest initial population density. Hazarika & Phukhan¹⁰ also reported that the significant reduction in height, root and shoot weight of plants was at an inoculum level of 1,000 nematodes/plant.

Johnson *et al.*¹¹, reported the damage potential and pathogenic levels of *M. incognita* on gladiolus and carnation under glasshouse

conditions. Growth parameters like shoot and root length, shoot and root weight and number of leaves were significantly reduced by different inoculum levels (10, 100 and 10,000 J_2 /plant) of *M. incognita* in both gladiolus and carnation. The reproduction rate of M. incognita on these crops was drastically reduced at higher inoculum levels (10,000 J_2 /plant). It was also observed that even 100 J_2 /plant were able to cause economic damage to gladiolus and carnation. Khanna & Jyoti¹² reported the pathogenic potential of M. incognita on Dianthus caryophillus. Plant growth was significantly reduced at the levels of 1,000 and 10,000 juveniles as compared to control. Meena & Mishra¹⁴ observed M. incognita causes a significant reduction in almost all the plant growth parameters with increase in the levels of nematode inoculum. Maximum reduction in all the plant growth parameters was recorded at the inoculum level of 10,000 J₂/pot which was followed by the levels of 1,000 J_2 /pot.

REFERENCES

- Al-Sayed, A. A., Farahat, A. A. and Mahfound, N. M., Life cycle of *Meloidogyne incognita* on some host plants at two different temperatures. *Egyptian Journal Agronematology*, **10**: 15-21 (2011).
- 2. Anamika, Simon, S., Variation in Life Cycle of *Meloidogyne incognita* in Different Months in Indian Condition. *International Journal of Science and Research* (2012).
- Ansari, S., Shahab, S., Mazid, M. and Ahmed, D., Comparative study of *Fusarium oxysporum* f sp. *lycopersici* and *Meloidogyne incognita* race-2 on plant growth parameters of tomato. *Agricultural Sciences*, 3: 844-847 (2012).
- Bhatti, D. S. and Jain, R. K., Estimation of loss in okra, tomato and brinjal yield due to *Meloidogyne javanica*. *Journal of Nematology*. 7: 37–41 (1977).
- 5. Choi, D., Choi, Y.M. & Han, S.C., Effects of Pratylenchus coffeae on growth of gerbera. *Research Reports of the Rural*

Int. J. Pure App. Biosci. 5 (2): 1017-1024 (2017)

Duggal et alInt. J. Pure App. BiosDevelopmentAdministration.Protection Agricultural Science Institute,34: 85-90 (1992).

- Curto. G., Dalavalle. E & Lazzeri, L., Life cycle duration of *Meloidogyne incognita* and host status of Brassicaceae and Capparaceae selected for glucosinate content. *Nematology*. 1-10 (2005).
- Dhankhar, R. K. S., Sharma, C., Sarna, N. T. & Trivedi, P.C., Pathogenicity of *Meloidogyne incognita* on water melon (*Citrullus vulgaris* Scharad). *Indian Journal of Nematology*, 16: 274 (1986).
- Ganaie, M.A. & Khan, T.A., Studies on the interactive effect of *Meloidogyne incognita* and *Fusarium solani* on *Lycopersicon esculentum*, Mill. *International Journal of Botany*, 7: 205 208 (2011).
- Gupta, D.C., Paruthi, I.J. & Jain, R.K., Effect of initial inoculum levels of *Meloidogyne* spp. on some cucurbitaceous crops. *Indian Journal of Nematology*, 25: 194-199 (1995).
- Hazarika, K. & Phukhan, P.N., Studies on the pathogenicity of *Meloidogyne incognita* on brinjal. *Journal of Agricultural Sciences*, 7: 221-223 (1994).
- 11. Johnson, S.B.N., Cannayane, I. & Rajendran, G., Studies on pathogenic level of *Meloidogyne incognita* on Gladiolus

and Carnation. *Current Nematology*, **14**: 75-78 (2003).

- Khanna, A.S & Jyoti, J., Pathogenicity of *Meloidogyne incognita* on Dianthus caryophillus. *Nematology Mediterranea*. **32(1):** 125-126 (2004).
- Mahapatra, S.N. & Swain, P.K., Life history of Meloidogyne incognita on black gram in the presence and absence of Fusarium oxysporom. *Indian Journal of Nematology*, 29: 185-205 (1999).
- Meena, M.L. & Mishra, S.D., Pathogenicity potentiality and extent of damage to soybean by root-knot nematode, *Meloidogyne incognita*. *Current Nematology*, 4: 1-6 (1993).
- 15. Pankaj and Siyanand, Effect of initial inoculum levels of *Meloidogyne incognita* on bitter gourd and round melon. *Indian Journal of Nematology*, **20:** 64-66 (1990).
- Reddy, P., Estimation of crop loss in peas due to *Meloidogyne incognita*. *Indian Journal of Nematology*. 15: 226 (1985).
- Singh, R. V. & Kumar, V., Life cycle of Meloidogyne incognita on Japanese mint (Mentha arvensis). Indian Journal of Nematology, 28: 89-90 (1998).
- Tarjan, A.C., Comparative studies of some root-knot nematodes infecting common snap dragon, *Antirrhinum majus* L. *Phytopathology*, **42:** 641-644 (1952).